Our Sponsors

Monday, February 14, 2011

Antarctica


Antarctica (pronounced /ænˈtɑrktɪkə/ ( listen)) is Earth's southernmost continent, encapsulating the South Pole. It is situated in the Antarctic region of the southern hemisphere, almost entirely south of the Antarctic Circle, and is surrounded by theSouthern Ocean. At 14.0 million km2 (5.4 million sq mi), it is the fifth-largest continent in area after AsiaAfricaNorth America, and South America. About 98% of Antarctica is covered by ice, which averages at least 1.6 kilometres (1.0 mi) in thickness.
Antarctica, on average, is the coldest, driest, and windiest continent, and has the highest average elevation of all the continents.[2] Antarctica is considered a desert, with annual precipitation of only 200 mm (8 inches) along the coast and far less inland.[3] There are no permanent human residents, but anywhere from 1,000 to 5,000 people reside throughout the year at the research stations scattered across the continent. Only cold-adapted plants and animals survive there, including penguinssealsnematodestardigrades,mites, many types of algae and other microorganisms, and tundra vegetation.
Although myths and speculation about a Terra Australis ("Southern Land") date back to antiquity, the first confirmed sighting of the continent is commonly accepted to have occurred in 1820 by the Russian expedition of Fabian Gottlieb von Bellingshausen andMikhail Lazarev. The continent, however, remained largely neglected for the rest of the 19th century because of its hostile environment, lack of resources, and isolation. The first formal use of the name "Antarctica" as a continental name in the 1890s is attributed to the Scottish cartographer John George Bartholomew. The name Antarctica is theromanized version of the Greek compound word ἀνταρκτική (antarktiké), feminine ofἀνταρκτικός (antarktikos),[4] meaning "opposite to the north".[5]
The Antarctic Treaty was signed in 1959 by twelve countries; to date, forty-six countries have signed the treaty. The treaty prohibits military activities and mineral mining, supports scientific research, and protects the continent's ecozone. Ongoing experiments are conducted by more than 4,000 scientists of many nationalities and with various research interests.

History

The snow surface at Dome C Station is typical of most of the continent's surface.
An iceberg dwarfs a ship in this 1920s English magazine illustration of a whaler in the Antarctic.
Belief in the existence of a Terra Australis – a vast continent in the far south of the globe to "balance" the northern lands of Europe, Asia and North Africa – has existed since the times ofPtolemy (1st century AD), who suggested the idea to preserve the symmetry of all knownlandmasses in the world. Depictions of a large southern landmass were common in maps such as the early 16th century Turkish Piri Reis map. Even in the late 17th century, after explorers had found that South America and Australia were not part of the fabled "Antarctica", geographers believed that the continent was much larger than its actual size.
European maps continued to show this hypothetical land until Captain James Cook's ships, HMSResolution and Adventure, crossed the Antarctic Circle on 17 January 1773, in December 1773 and again in January 1774.[6] Cook in fact came within about 75 miles (121 km) of the Antarctic coast before retreating in the face of field ice in January 1773.[7] The first confirmed sighting of Antarctica can be narrowed down to the crews of ships captained by three individuals. According to various organizations (the National Science Foundation,[8] NASA,[9] the University of California, San Diego,[10] and other sources),[11][12] ships captained by three men sighted Antarctica in 1820:Fabian Gottlieb von Bellingshausen (an Estonian-born captain in the Russian Imperial Navy),Edward Bransfield (a Ireland-born captain in the Royal Navy), and Nathaniel Palmer (an Americansealer out of Stonington, Connecticut). Von Bellingshausen saw Antarctica on 27 January 1820, three days before Bransfield sighted land, and ten months before Palmer did so in November 1820. On that day the two-ship expedition led by Von Bellingshausen and Mikhail Petrovich Lazarevreached a point within 32 kilometers (20 mi) of the Antarctic mainland and saw ice fields there. The first documented landing on mainland Antarctica was by the American sealer John Davis in West Antarctica on 7 February 1821, although some historians dispute this claim.
In December 1839, as part of the United States Exploring Expedition of 1838–42 conducted by theUnited States Navy (sometimes called the "Ex. Ex.", or "the Wilkes Expedition"), an expedition sailed from Sydney, Australia, into the Antarctic Ocean, as it was then known, and reported the discovery "of an Antarctic continent west of the Balleny Islands". That part of Antarctica was later named "Wilkes Land", a name it maintains to this day.
Explorer James Clark Ross passed through what is now known as the Ross Sea and discoveredRoss Island (both of which were named for him) in 1841. He sailed along a huge wall of ice that was later named the Ross Ice Shelf (also named for him). Mount Erebus and Mount Terror are named after two ships from his expedition: HMS Erebus and Terror.[13] Mercator Cooper landed in East Antarctica on 26 January 1853.[14]
Nimrod Expedition South Pole Party (left to right): WildShackletonMarshall and Adams
During the Nimrod Expedition led by Ernest Shackleton in 1907, parties led by T. W. Edgeworth David became the first to climb Mount Erebus and to reach the South Magnetic PoleDouglas Mawson, who assumed the leadership of the Magnetic Pole party on their perilous return, went on to lead several expeditions until retiring in 1931.[15] In addition, Shackleton himself and three other members of his expedition made several firsts in December 1908 – February 1909: they were the first humans to traverse the Ross Ice Shelf, the first to traverse the Transantarctic Mountain Range (via the Beardmore Glacier), and the first to set foot on the South Polar Plateau. An expedition led by Norwegian polar explorer Roald Amundsen from the ship Fram became the first to reach the geographic South Pole on 14 December 1911, using a route from the Bay of Whales and up theAxel Heiberg Glacier.[16] One month later, the ill-fated Scott Expedition reached the pole.
Richard Evelyn Byrd led several voyages to the Antarctic by plane in the 1930s and 1940s. He is credited with implementing mechanized land transport on the continent and conducting extensive geological and biological research.[17] However, it was not until 31 October 1956 that anyone set foot on the South Pole again; on that day a U.S. Navy group led by Rear Admiral George J. Dufek successfully landed an aircraft there.[18]
The first person to sail single-handed to Antarctica was the New Zealander David Henry Lewis, in a 10-meter steel sloop Ice Bird.

Geography

satellite composite image of Antarctica
Elevation colored by relief height
Speed of ice streams
Size comparison Europe-Antarctica
Centered asymmetrically around the South Pole and largely south of the Antarctic Circle, Antarctica is the southernmost continent and is surrounded by the Southern Ocean; alternatively, it may be considered to be surrounded by the southern PacificAtlantic, and Indian Oceans, or by the southern waters of the World Ocean. It covers more than 1.4E+7 km2 (5,400,000 sq mi), making it the fifth-largest continent, about 1.3 times as large as Europe. The coastline measures 17,968 km (11,165 mi) and is mostly characterized by ice formations, as the following table shows:
Coastal types around Antarctica (Drewry, 1983)
TypeFrequency
Ice shelf (floating ice front)44%
Ice walls (resting on ground)38%
Ice stream/outlet glacier (ice front or ice wall)13%
Rock5%
Total100%
Maritime Antarctica
Antarctica is divided in two by the Transantarctic Mountains close to the neck between the Ross Sea and the Weddell Sea. The portion west of the Weddell Sea and east of the Ross Sea is called West Antarctica and the remainder East Antarctica, because they roughly correspond to the Western and Eastern Hemispheres relative to the Greenwich meridian.
About 98% of Antarctica is covered by the Antarctic ice sheet, a sheet of ice averaging at least 1.6 km (1.0 mi) thick. The continent has about 90% of the world's ice (and thereby about 70% of the world's fresh water). If all of this ice were melted, sea levels would rise about 60 m (200 ft).[19]In most of the interior of the continent, precipitation is very low, down to 20 mm (0.8 in) per year; in a few "blue ice" areas precipitation is lower than mass loss by sublimation and so the local mass balance is negative. In the dry valleys the same effect occurs over a rock base, leading to a desiccated landscape.
West Antarctica is covered by the West Antarctic Ice Sheet. The sheet has been of recent concern because of the real, if small, possibility of its collapse. If the sheet were to break down,ocean levels would rise by several metres in a relatively geologically short period of time, perhaps a matter of centuries. Several Antarctic ice streams, which account for about 10% of the ice sheet, flow to one of the many Antarctic ice shelves.
East Antarctica lies on the Indian Ocean side of the Transantarctic Mountains and comprisesCoats LandQueen Maud LandEnderby LandMac Robertson LandWilkes Land and Victoria Land. All but a small portion of this region lies within the Eastern Hemisphere. East Antarctica is largely covered by the East Antarctic Ice Sheet.
Mount Erebus, an active volcano on Ross Island
Vinson Massif, the highest peak in Antarctica at 4,892 m (16,050 ft), is located in the Ellsworth Mountains. Antarctica contains many other mountains, both on the main continent and the surrounding islands. Located on Ross Island, Mount Erebus is the world's southernmost active volcano. Another well-known volcano is found on Deception Island, which is famous for a giant eruption in 1970. Minor eruptions are frequent and lava flow has been observed in recent years. Other dormant volcanoes may potentially be active.[20] In 2004, an underwater volcano was found in the Antarctic Peninsula by American and Canadian researchers. Recent evidence shows this unnamed volcano may be active.[21]
Antarctica is home to more than 70 lakes that lie at the base of the continental ice sheet. Lake Vostok, discovered beneath Russia's Vostok Station in 1996, is the largest of these subglacial lakes. It was once believed that the lake had been sealed off for 500,000 to one million years but a recent survey suggests that, every so often, there are large flows of water from one lake to another.[22]
There is some evidence, in the form of ice cores drilled to about 400 m (1,300 ft) above the water line, that Lake Vostok's waters may contain microbial life. The frozen surface of the lake shares similarities with Jupiter's moon Europa. If life is discovered in Lake Vostok, this would strengthen the argument for the possibility of life on Europa.[23] On 7 February 2008, a NASA team embarked on a mission to Lake Untersee, searching for extremophiles in its highly alkaline waters. If found, these resilient creatures could further bolster the argument for extraterrestrial life in extremely cold, methane-rich environments.[24]

Geology

Geological history and paleontology

More than 170 million years ago, Antarctica was part of the supercontinent Gondwana. Over time, Gondwana gradually broke apart and Antarctica as we know it today was formed around 25 million years ago.

Paleozoic era (540–250 Ma)

Survey route
During the Cambrian period, Gondwana had a mild climate. West Antarctica was partially in theNorthern Hemisphere, and during this period large amounts of sandstoneslimestones and shaleswere deposited. East Antarctica was at the equator, where sea floor invertebrates and trilobitesflourished in the tropical seas. By the start of the Devonian period (416 Ma), Gondwana was in more southern latitudes and the climate was cooler, though fossils of land plants are known from this time. Sand and silts were laid down in what is now the EllsworthHorlick and Pensacola MountainsGlaciation began at the end of the Devonian period (360 Ma), as Gondwana became centered around the South Pole and the climate cooled, though flora remained. During thePermian period, the plant life became dominated by fern-like plants such as Glossopteris, which grew in swamps. Over time these swamps became deposits of coal in the Transantarctic Mountains. Towards the end of the Permian period, continued warming led to a dry, hot climate over much of Gondwana.[25]

Mesozoic era (250–65 Ma)

As a result of continued warming, the polar ice caps melted and much of Gondwana became a desert. In Eastern Antarctica, the seed fern became established, and large amounts of sandstone and shale were laid down at this time. Synapsids, commonly known as "mammal-like reptiles", were common in Antarctica during the Late Permian and Early Triassic and included forms such as Lystrosaurus. The Antarctic Peninsula began to form during the Jurassic period (206–146 Ma), and islands gradually rose out of the ocean. Ginkgo trees and cycads were plentiful during this period. In West Antarctica, coniferous forests dominated through the entire Cretaceous period (146–65 Ma), though Southern beech began to take over at the end of this period. Ammoniteswere common in the seas around Antarctica, and dinosaurs were also present, though only three Antarctic dinosaur genera (Cryolophosaurus and Glacialisaurus, from the Hanson Formation,[26]and Antarctopelta) have been described to date.[27] It was during this period that Gondwana began to break up.

Gondwanaland breakup (160–23 Ma)

The cooling of Antarctica occurred stepwise, as the continental spread changed the oceanic currents from longitudinal equator-to-pole temperature-equalizing currents to latitudinal currents that preserved and accentuated latitude temperature differences.
Africa separated from Antarctica around 160 Ma, followed by the Indian subcontinent, in the early Cretaceous (about 125 Ma). About 65 Ma, Antarctica (then connected to Australia) still had a tropical to subtropical climate, complete with a marsupial fauna. About 40 Ma Australia-New Guinea separated from Antarctica, so that latitudinal currents could isolate Antarctica from Australia, and the first ice began to appear. During the Eocene-Oligocene extinction event about 34 million years ago, CO2 levels have been found to be about 760 ppm[28] and had been decreasing from earlier levels in the thousands of ppm. Around 23 Ma, the Drake Passage opened between Antarctica and South America, resulting in the Antarctic Circumpolar Current that completely isolated the continent. Models of the changes suggest that declining CO2 levels became more important.[29] The ice began to spread, replacing the forests that then covered the continent. Since about 15 Ma, the continent has been mostly covered with ice,[30] with the Antarctic ice cap reaching its present extension around 6 Ma.

Neogene Period (23-.05 mya)

In 1986, Peter Webb and a team of paleontologists at Ohio State University discovered the remains of an extensive temperate forest that flourished 400 miles from the South Pole 3 million years ago.[31][32][33]

Geology of present-day Antarctica

Subglacial topography and bathymetry of bedrock underlying Antarctica ice sheet
The geological study of Antarctica has been greatly hindered by the fact that nearly all of the continent is permanently covered with a thick layer of ice. However, new techniques such asremote sensingground-penetrating radar and satellite imagery have begun to reveal the structures beneath the ice.
Geologically, West Antarctica closely resembles the Andes mountain range of South America.[25]The Antarctic Peninsula was formed by uplift and metamorphism of sea bed sediments during the late Paleozoic and the early Mesozoic eras. This sediment uplift was accompanied by igneousintrusions and volcanism. The most common rocks in West Antarctica are andesite and rhyolitevolcanics formed during the Jurassic period. There is also evidence of volcanic activity, even after the ice sheet had formed, in Marie Byrd Land and Alexander Island. The only anomalous area of West Antarctica is the Ellsworth Mountains region, where the stratigraphy is more similar to the eastern part of the continent.
East Antarctica is geologically varied, dating from the Precambrian era, with some rocks formed more than 3 billion years ago. It is composed of a metamorphic and igneous platform which is the basis of the continental shield. On top of this base are various modern rocks, such as sandstones,limestones, coal and shales laid down during the Devonian and Jurassic periods to form the Transantarctic Mountains. In coastal areas such as Shackleton Range and Victoria Land some faulting has occurred.
The main mineral resource known on the continent is coal.[30] It was first recorded near the Beardmore Glacier by Frank Wild on the Nimrod Expedition, and now low-grade coal is known across many parts of the Transantarctic Mountains. The Prince Charles Mountains contain significant deposits of iron ore. The most valuable resources of Antarctica lie offshore, namely the oil and natural gas fields found in the Ross Sea in 1973. Exploitation of all mineral resources is banned until 2048 by the Protocol on Environmental Protection to the Antarctic Treaty.

Climate

The blue ice covering Lake Fryxell, in theTransantarctic Mountains, comes fromglacial meltwater from the Canada Glacierand other smaller glaciers.
Antarctica is the coldest place on Earth. The coldest natural temperature ever recorded on Earth was −89.2 °C (−128.6 °F) at the Russian Vostok Station in Antarctica on 21 July 1983.[34] For comparison, this is 11 °C (20 °F) colder than subliming dry ice. Antarctica is a frozen desert with little precipitation; the South Pole itself receives less than 10 cm (4 in) per year, on average. Temperatures reach a minimum of between −80 °C (−112 °F) and −90 °C (−130 °F) in the interior in winter and reach a maximum of between 5 °C (41 °F) and 15 °C (59 °F) near the coast in summer. Sunburn is often a health issue as the snow surface reflects almost all of the ultraviolet light falling on it.[35]
East Antarctica is colder than its western counterpart because of its higher elevation. Weather fronts rarely penetrate far into the continent, leaving the center cold and dry. Despite the lack of precipitation over the central portion of the continent, ice there lasts for extended time periods. Heavy snowfalls are not uncommon on the coastal portion of the continent, where snowfalls of up to 1.22 metres (48 in) in 48 hours have been recorded.
At the edge of the continent, strong katabatic winds off the polar plateau often blow at storm force. In the interior, however, wind speeds are typically moderate. During summer, more solar radiation reaches the surface during clear days at the South Pole than at the equatorbecause of the 24 hours of sunlight each day at the Pole.[1]
Antarctica is colder than the Arctic for two reasons. First, much of the continent is more than 3 kilometres (2 mi) above sea level, and temperature decreases with elevation. Second, the Arctic Ocean covers the north polar zone: the ocean's relative warmth is transferred through the icepack and prevents temperatures in the Arctic regions from reaching the extremes typical of the land surface of Antarctica.
Mountain glaciation
Given the latitude, long periods of constant darkness or constant sunlight create climates unfamiliar to human beings in much of the rest of the world. The aurora australis, commonly known as the southern lights, is a glow observed in the night sky near the South Pole created by the plasma-full solar winds that pass by the Earth. Another unique spectacle is diamond dust, a ground-level cloud composed of tiny ice crystals. It generally forms under otherwise clear or nearly clear skies, so people sometimes also refer to it as clear-sky precipitation. A sun dog, a frequent atmospheric optical phenomenon, is a bright "spot" beside the true sun.[35]

Population

Antarctica has no permanent residents, but a number of governments maintain permanent mannedresearch stations throughout the continent. The number of people conducting and supporting scientific research and other work on the continent and its nearby islands varies from about 1,000 in winter to about 5,000 in the summer. Many of the stations are staffed year-round, the winter-over personnel typically arriving from their home countries for a one-year assignment. An Orthodox church opened in 2004 at the Russian Bellingshausen Station is also manned year-round by one or two priests, who are similarly rotated every year.[36][37]
Two researchers studying planktonthrough microscopes
The first semi-permanent inhabitants of regions near Antarctica (areas situated south of theAntarctic Convergence) were British and American sealers who used to spend a year or more onSouth Georgia, from 1786 onward. During the whaling era, which lasted until 1966, the population of that island varied from over 1,000 in the summer (over 2,000 in some years) to some 200 in the winter. Most of the whalers were Norwegian, with an increasing proportion of Britons. The settlements included GrytvikenLeith HarbourKing Edward PointStromnessHusvikPrince Olav HarbourOcean Harbour and Godthul. Managers and other senior officers of the whaling stations often lived together with their families. Among them was the founder of Grytviken, CaptainCarl Anton Larsen, a prominent Norwegian whaler and explorer who, along with his family, adopted British citizenship in 1910.
Field work being carried out on Melnik Peak, Livingston Island
The first child born in the southern polar region was Norwegian girl Solveig Gunbjørg Jacobsen, born in Grytviken on 8 October 1913, and her birth was registered by the resident British Magistrate of South Georgia. She was a daughter of Fridthjof Jacobsen, the assistant manager of the whaling station, and of Klara Olette Jacobsen. Jacobsen arrived on the island in 1904 to become the manager of Grytviken, serving from 1914 to 1921; two of his children were born on the island.[38]
Emilio Marcos Palma was the first person born south of the 60th parallel south (the continental limit according to the Antarctic Treaty),[39] as well as the first one born on the Antarctic mainland, in 1978 at Base Esperanza, on the tip of the Antarctic Peninsula;[40][41] his parents were sent there along with seven other families by the Argentine government to determine if family life was suitable on the continent. In 1984, Juan Pablo Camacho was born at the Frei Montalva Station, becoming the first Chilean born in Antarctica. Several bases are now home to families with children attending schools at the station.[42] As of 2009, eleven children were born in Antarctica (south of the 60th parallel south): eight at the Argentinean Esperanza Base[43] and three at the Chilean Frei Montalva Station.[44]

Flora and fauna

Flora

The climate of Antarctica does not allow extensive vegetation. A combination of freezing temperatures, poor soil quality, lack of moisture, and lack of sunlight inhibit plant growth. As a result, plant life is limited to mostly mosses and liverworts. The autotrophic community is made up of mostly protists. The flora of the continent largely consists of lichenbryophytesalgae, and fungi. Growth generally occurs in the summer, and only for a few weeks at most.
More than 200 species of lichens are known to exist in Antarctica.
There are more than 200 species of lichens and about 50 species of bryophytes, such as mosses. Seven hundred species of algae exist, most of which are phytoplankton. Multicolored snow algaeand diatoms are especially abundant in the coastal regions during the summer. There are two species of flowering plants found in the Antarctic Peninsula: Deschampsia antarctica (Antarctic hair grass) and Colobanthus quitensis (Antarctic pearlwort).[45]

Fauna

Few terrestrial vertebrates live in Antarctica.[46] Invertebrate life includes microscopic mites like theAlaskozetes antarcticuslicenematodestardigradesrotiferskrill and springtails. Recently ancient ecosystems consisting of several types of bacteria have been found living trapped deep beneath glaciers.[47] The flightless midge Belgica antarctica, up to 6 millimeters (0.2 in) in size, is the largest purely terrestrial animal in Antarctica.[48] The Snow Petrel is one of only three birds that breed exclusively in Antarctica.[49]
Emperor Penguins in Ross Sea, Antarctica
A variety of marine animals exist and rely, directly or indirectly, on the phytoplankton. Antarctic sea life includes penguinsblue whalesorcascolossal squids and fur seals. The Emperor penguin is the only penguin that breeds during the winter in Antarctica, while the Adélie Penguin breeds farther south than any other penguin. The Rockhopper penguin has distinctive feathers around the eyes, giving the appearance of elaborate eyelashes.King penguinsChinstrap penguins, and Gentoo Penguins also breed in the Antarctic.
The Antarctic fur seal was very heavily hunted in the 18th and 19th centuries for its pelt by sealers from the United States and the United Kingdom. The Weddell Seal, a "true seal", is named afterSir James Weddell, commander of British sealing expeditions in the Weddell SeaAntarctic krill, which congregates in large schools, is the keystone species of the ecosystem of the Southern Ocean, and is an important food organism for whales, seals, leopard seals, fur seals, squid,icefish, penguins, albatrosses and many other birds.[50]
The passing of the Antarctic Conservation Act in the U.S. brought several restrictions to U.S. activity on Antarctica. The introduction of alien plants or animals can bring a criminal penalty, as can the extraction of any indigenous species. The overfishing of krill, which plays a large role in the Antarctic ecosystem, led officials to enact regulations on fishing. The Convention for the Conservation of Antarctic Marine Living Resources (CCAMLR), a treaty that came into force in 1980, requires that regulations managing all Southern Ocean fisheries consider potential effects on the entire Antarctic ecosystem.[1] Despite these new acts, unregulated and illegal fishing, particularly of Patagonian toothfish (marketed as Chilean Sea Bass in the U.S.), remains a serious problem. The illegal fishing of toothfish has been increasing, with estimates of 32,000 tonnes (35,300 short tons) in 2000.[51][52]
A census of sea life carried out during the International Polar Year and which involved some 500 researchers is due for release in 2010. The research is part of the global Census of Marine Life (CoML) and has disclosed some remarkable findings. More than 235 marine organisms live in both polar regions, having bridged the gap of 12,000 km (7,456 mi). Large animals such as some cetaceans and birds make the round trip annually. More surprising are small forms of life such as mudworms, sea cucumbers and free-swimming snails found in both polar oceans. Various factors may aid in their distribution - fairly uniform temperatures of the deep ocean at the poles and the equator which differ by no more than 5 °C, and the major current systems or marine conveyor belt which transport egg and larvae stages.[53]

Politics

Emblem of the Antarctic Treaty since 2002.
Antarctica has no government, although various countries claim sovereignty in certain regions. While a few of these countries have mutually recognised each other's claims,[54] the validity of these claims is generally not recognised universally.[1]
New claims on Antarctica have been suspended since 1959 and the continent is considered politically neutral. Its status is regulated by the 1959 Antarctic Treaty and other related agreements, collectively called the Antarctic Treaty System. Antarctica is defined as all land andice shelves south of 60° S for the purposes of the Treaty System. The treaty was signed by twelve countries including the Soviet Union (and later Russia), the United Kingdom, ArgentinaChile, Australia, and the United States.[55] It set aside Antarctica as a scientific preserve, established freedom of scientific investigation and environmental protection, and banned military activity on the continent. This was the first arms control agreement established during the Cold War.
In 1983, the Antarctic Treaty Parties began negotiations on a convention to regulate mining in Antarctica.[56] A coalition of international organisations[57] launched a public pressure campaign to prevent any minerals development in the region, led largely by Greenpeace International[58] which established its own scientific station–World Park Base–in the Ross Sea region[59] and conducted annual expeditions to document environmental effects of humans on the continent.[60] In 1988, the Convention on the Regulation of Antarctic Mineral Resources (CRAMRA) was adopted.[61] The following year, however, Australia and France announced that they would not ratify the convention, rendering it dead for all intents and purposes. They proposed instead that a comprehensive regime to protect the Antarctic environment be negotiated in its place.[62] The Protocol on Environmental Protection to the Antarctic Treaty (the ‘Madrid Protocol’) was negotiated as other countries followed suit and on 14 January 1998 it entered into force.[63] The Madrid Protocol bans all mining in Antarctica, designating the continent as a ‘natural reserve devoted to peace and science’.
The Antarctic Treaty prohibits any military activity in Antarctica, including the establishment of military bases and fortifications, military manoeuvers, and weapons testing. Military personnel or equipment are permitted only for scientific research or other peaceful purposes.[64] The only documented military land manoeuvre was Operation NINETY by the Argentine military.[65]
The United States military issues the Antarctica Service Medal to military members or civilians who perform research duty in Antarctica. The medal includes a "wintered over" bar issued to those who remain on the continent for 2 six-month seasons.[66]

Antarctic territories

Antarctica, Argentina territorial claim.svgAntarctica, Australia territorial claim.svgAntarctica, Chile territorial claim.svgAntarctica, France territorial claim.svgAntarctica, New Zealand territorial claim.svgAntarctica, Norway territorial claim.svgAntarctica, United Kingdom territorial claim.svg
ArgentinaAustraliaChileFranceNew ZealandNorwayUnited Kingdom
Date↓Country↓Territory↓Claim limits↓
1908United Kingdom United KingdomBritish Antarctic Territory British Antarctic Territory20°W to 80°W
1923New Zealand New ZealandNew Zealand New Zealand Ross Dependency150°W to 160°E
1924France FranceFrench Southern and Antarctic Lands Adélie Land142°2'E to 136°11'E
1929Norway Norway Peter I Island68°50′S 90°35′W
1933Australia AustraliaAustralia Australian Antarctic Territory160°E to 142°2'E and
136°11'E to 44°38'E
1939Norway Norway Queen Maud Land44°38'E to 20°W
1940Chile ChileAntártica Chilena Province Antártica53°W to 90°W
1943Argentina ArgentinaArgentine Antarctica Argentine Antarctica25°W to 74°W
NoneUnclaimed territory
(Marie Byrd Land)
90°W to 150°W
(except the Peter I Island)
The Argentine, British, and Chilean claims all overlap, and have caused friction. The areas shown as Australia's and New Zealand's claims were British territory until they were handed over following the countries' independence. Australia currently claims the largest area. Australia and New Zealand both recognise the British claim, and vice-versa.

Countries interested in territorial division of Antarctica

This group of countries participating as members of Antarctica Treaty have a territorial interest in the Antarctic continent but the provisions of the Treaty do not allow them to make their claims while it is in force.[67][68]
  • Brazil Brazil has a designated 'zone of interest' that is not an actual claim.[69]
  • Peru Peru has formally reserved its right to make a claim.[67][68]
  • Russia Russia has reserved its right to claim.[70]
  • South Africa South Africa has formally reserved its right to make a claim.[67][68]
  •  Spain has formally reserved its right to make a claim.[citation needed]
  • United States USA has formally reserved its right to make a claim, but currently does not recognize any claims made in Antarctica.[70]

Economy

The illegal capture and sale of thePatagonian toothfish has led to several arrests. Pictured here is the Antarctic toothfish, a sister species.
Antarctic postal services
Although coal, hydrocarbons, iron ore, platinumcopperchromium, nickel, gold and other minerals have been found, they have not been in large enough quantities to exploit. The 1991Protocol on Environmental Protection to the Antarctic Treaty also restricts a struggle for resources. In 1998, a compromise agreement was reached to place an indefinite ban on mining, to be reviewed in 2048, further limiting economic development and exploitation. The primary economic activity is the capture and offshore trading of fish. Antarctic fisheries in 2000–01 reported landing 112,934 tonnes.
Small-scale "expedition tourism" has existed since 1957 and is currently subject to Antarctic Treaty and Environmental Protocol provisions, but in effect self-regulated by the International Association of Antarctica Tour Operators (IAATO). Not all vessels associated with Antarctic tourism are members of IAATO, but IAATO members account for 95% of the tourist activity. Travel is largely by small or medium ship, focusing on specific scenic locations with accessible concentrations of iconic wildlife. A total of 37,506 tourists visited during the 2006–07 Austral summer with nearly all of them coming from commercial ships. The number is predicted to increase to over 80,000 by 2010.[71][72]
There has been some recent concern over the potential adverse environmental and ecosystem effects caused by the influx of visitors. A call for stricter regulations for ships and a tourism quota has been made by some environmentalists and scientists.[73] The primary response by Antarctic Treaty Parties has been to develop, through their Committee for Environmental Protection and in partnership with IAATO, "site use guidelines" setting landing limits and closed or restricted zones on the more frequently visited sites. Antarctic sight seeing flights (which did not land) operated out of Australia and New Zealand until the fatal crash of Air New Zealand Flight 901 in 1979 on Mount Erebus, which killed all 257 aboard. Qantas resumed commercial overflights to Antarctica from Australia in the mid-1990s.

Transport

Transport on the continent has transformed from explorers crossing the isolated remote area of Antarctica on foot to a more open area due to human technologies enabling more convenient and faster transport by land and predominantly by air and water. The use of dogs to pull researchers and sledges has been banned on objections that dogs are an alien species to Antarctica and menaces to wildlife assuperpredators.

Research

full moon and 25-second exposure allowed sufficient light for this photo to be taken at Amundsen-Scott South Pole Stationduring the long Antarctic night. The station can be seen at far left, the power plant in the center and the mechanic's garage in the lower right. The green light in the background is the Aurora Australis.
Each year, scientists from 27 different nations conduct experiments not reproducible in any other place in the world. In the summer more than 4,000 scientists operate research stations; this number decreases to just over 1,000 in the winter.[1] McMurdo Station is capable of housing more than 1,000 scientists, visitors, and tourists.
Researchers include biologistsgeologistsoceanographersphysicistsastronomers,glaciologists, and meteorologists. Geologists tend to study plate tectonics, meteorites from outer space, and resources from the breakup of the supercontinent Gondwanaland. Glaciologists in Antarctica are concerned with the study of the history and dynamics of floating ice, seasonal snowglaciers, and ice sheets. Biologists, in addition to examining the wildlife, are interested in how harsh temperatures and the presence of people affect adaptation and survival strategies in a wide variety of organisms. Medical physicians have made discoveries concerning the spreading of viruses and the body's response to extreme seasonal temperatures. Astrophysicists atAmundsen-Scott South Pole Station study the celestial dome and cosmic microwave background radiation. Many astronomical observations are better made from the interior of Antarctica than from most surface locations because of the high elevation, which results in a thin atmosphere, low temperature, which minimizes the amount of water vapour in the atmosphere, and absence of light pollution, thus allowing for a view of space clearer than anywhere else on Earth. Antarctic ice serves as both the shield and the detection medium for the largest neutrino telescope in the world, built 2 kilometers below Amundsen-Scott station.[74]
Since the 1970s, an important focus of study has been the ozone layer in the atmosphere above Antarctica. In 1985, three British Scientists working on data they had gathered at Halley Station on the Brunt Ice Shelf discovered the existence of a hole in this layer. It was eventually determined that the destruction of the ozone was caused by chlorofluorocarbons emitted by human products. With the ban of CFCs in theMontreal Protocol of 1989, it is believed that the ozone hole will close up by around 2065.[75] In September 2006, NASA satellite data showed that the Antarctic ozone hole was the largest on record, covering 27.5 million km2 (10.6 million sq mi).[75]

Princess Elisabeth Polar Science Station

On 6 September 2007, Belgian-based International Polar Foundation unveiled the Princess Elisabeth station, the world's first zero-emissions polar science station in Antarctica to research climate change. Costing $16.3 million, the prefabricated station, which is part of International Polar Year, was shipped to the South Pole from Belgium by the end of 2008 to monitor the health of the polar regions. Belgian polar explorerAlain Hubert stated: "This base will be the first of its kind to produce zero emissions, making it a unique model of how energy should be used in the Antarctic." Johan Berte is the leader of the station design team and manager of the project which conducts research in climatology,glaciology and microbiology.[76]

Meteorites

Antarctic meteorite, named ALH84001, from Mars
Meteorites from Antarctica are an important area of study of material formed early in the solar system; most are thought to come from asteroids, but some may have originated on largerplanets. The first meteorites were found in 1912. In 1969, a Japanese expedition discovered nine meteorites. Most of these meteorites have fallen onto the ice sheet in the last million years. Motion of the ice sheet tends to concentrate the meteorites at blocking locations such as mountain ranges, with wind erosion bringing them to the surface after centuries beneath accumulated snowfall. Compared with meteorites collected in more temperate regions on Earth, the Antarctic meteorites are well-preserved.[77]
This large collection of meteorites allows a better understanding of the abundance of meteorite types in the solar system and how meteorites relate to asteroids and comets. New types of meteorites and rare meteorites have been found. Among these are pieces blasted off the Moon, and probably Mars, by impacts. These specimens, particularly ALH84001 discovered by ANSMET, are at the center of the controversy about possible evidence of microbial life on Mars. Because meteorites in space absorb and record cosmic radiation, the time elapsed since the meteorite hit the Earth can be determined from laboratory studies. The elapsed time since fall, or terrestrial residence age, of a meteorite represents more information that might be useful in environmental studies of Antarctic ice sheets.[77]
In 2006, a team of researchers from Ohio State University used gravity measurements by NASA's GRACE satellites to discover the 300-mile (480 km)-wide Wilkes Land crater, which probably formed about 250 million years ago.[78]

Volcanic eruption

In January 2008, the British Antarctic Survey (BAS) scientists, led by Hugh Corr and David Vaughan, reported (in the journal Nature Geoscience) that 2,200 years ago, a volcano erupted under Antarctica's ice sheet (based on airborne survey with radar images). The biggest eruption in Antarctica in the last 10,000 years, the volcanic ash was found deposited on the ice surface under the Hudson Mountains, close to Pine Island Glacier.

Ice mass and global sea level

Due to its location at the South Pole, Antarctica receives relatively little solar radiation. This means that it is a very cold continent where water is mostly in the form of ice. Precipitation is low (most of Antarctica is a desert) and almost always in the form of snow, which accumulates and forms a giant ice sheet which covers the land. Parts of this ice sheet form moving glaciers known as ice streams, which flow towards the edges of the continent. Next to the continental shore are many ice shelves. These are floating extensions of outflowing glaciers from the continental ice mass. Offshore, temperatures are also low enough that ice is formed from seawater through most of the year. It is important to understand the various types of Antarctic ice to understand possible effects on sea levels and the implications of global warming.
Sea ice extent expands annually in the Antarctic winter and most of this ice melts in the summer. This ice is formed from the ocean water and floats in the same water and thus does not contribute to rise in sea level. The extent of sea ice around Antarctica has remained roughly constant in recent decades, although the thickness changes are unclear.[80][81]
Melting of floating ice shelves (ice that originated on the land) does not in itself contribute much to sea-level rise (since the ice displaces only its own mass of water). However it is the outflow of the ice from the land to form the ice shelf which causes a rise in global sea level. This effect is offset by snow falling back onto the continent. Recent decades have witnessed several dramatic collapses of large ice shelves around the coast of Antarctica, especially along the Antarctic Peninsula. Concerns have been raised that disruption of ice shelves may result in increased glacial outflow from the continental ice mass.
On the continent itself, the large volume of ice present stores around 70% of the world's fresh water. This ice sheet is constantly gaining ice from snowfall and losing ice through outflow to the sea. West Antarctica is currently experiencing a net outflow of glacial ice, which will increase global sea level over time. A review of the scientific studies looking at data from 1992 to 2006 suggested that a net loss of around 50gigatonnes of ice per year was a reasonable estimate (around 0.14 mm of sea level rise). Significant acceleration of outflow glaciers in theAmundsen Sea Embayment may have more than doubled this figure for 2006.
East Antarctica is a cold region with a ground base above sea level and occupies most of the continent. This area is dominated by small accumulations of snowfall which becomes ice and thus eventually seaward glacial flows. The mass balance of the East Antarctic Ice Sheetas a whole is thought to be slightly positive (lowering sea level) or near to balance. However, increased ice outflow has been suggested in some regions.

Effects of global warming

Antarctican Temperature
Warming trend from 1957 - 2006
Legend
Some of Antarctica has been warming up; particularly strong warming has been noted on the Antarctic Peninsula. A study by Eric Steig published in 2009 noted for the first time that the continent-wide average surface temperature trend of Antarctica is slightly positive at >0.05 °C (0.09 °F) per decade from 1957 to 2006. This study also noted that West Antarctica has warmed by more than 0.1 °C (0.2 °F) per decade in the last 50 years, and this warming is strongest in winter and spring. This is partly offset by fall cooling in East Antarctica.[86] There is evidence from one study that Antarctica is warming as a result of human carbon dioxide emissions.[87]However, the small amount of surface warming in West Antarctica is not believed to be directly affecting the West Antarctic Ice Sheet's contribution to sea level. Instead the recent increases in glacier outflow are believed to be due to an inflow of warm water from the deep ocean, just off thecontinental shelf.[88][89] The net contribution to sea level from the Antarctic Peninsula is more likely to be a direct result of the much greater atmospheric warming there.[90]
In 2002 the Antarctic Peninsula's Larsen-B ice shelf collapsed.[91] Between 28 February and 8 March 2008, about 570 square kilometres (220 sq mi) of ice from the Wilkins Ice Shelf on the southwest part of the peninsula collapsed, putting the remaining 15,000 km2 (5,800 sq mi) of the ice shelf at risk. The ice was being held back by a "thread" of ice about 6 km (4 mi) wide,[92][93] prior to its collapse on 5 April 2009.[94][95] According to NASA, the most widespread Antarctic surface melting of the past 30 years occurred in 2005, when an area of ice comparable in size to California briefly melted and refroze; this may have resulted from temperatures rising to as high as 5 °C (41 °F).[96]

Ozone depletion

Image of the largest Antarctic ozone holeever recorded due to CFCs accumulation (September 2006)
Each year a large area of low ozone concentration or "ozone hole" grows over Antarctica. This hole covers the whole continent and is at its largest in September. 2008 saw the longest lasting hole on record, which remained until the end of December.[97] The hole was detected by scientists in 1985[98] and has tended to increase over the years of observation. The ozone hole is attributed to the emission of chlorofluorocarbons or CFCs into the atmosphere, which decompose the ozoneinto other gases.[99]
Some scientific studies suggest that ozone depletion may have a dominant role in the recent climate changes in Antarctica (and a wider area of the Southern Hemisphere).[98] Ozone absorbs large amounts of ultraviolet radiation in the stratosphere. Ozone depletion over Antarctica can cause a cooling of around 6 °C in the local stratosphere. This cooling has the effect of intensifying the westerly winds which flow around the continent (the polar vortex) and thus prevents outflow of the cold air near the South Pole. As a result, the continental mass of the East Antarctic ice sheet is held at lower temperatures, and the peripheral areas of Antarctica, especially the Antarctic Peninsula, are subject to higher temperatures, which promote accelerated melting. Recent models also suggest that the ozone depletion/enhanced polar vortex effect also accounts for the recent increase in sea-ice just offshore of the continent

0 comments:

Post a Comment

Twitter Delicious Facebook Digg Stumbleupon Favorites More

 
Design by Free WordPress Themes | Bloggerized by Lasantha - Premium Blogger Themes | ewa network review